木星与土星0度,木星和土星哪个温度高

网上有很多关于木星与土星0度,木星和土星哪个温度高的知识,也有很多人为大家解答关于木星和土星 0度的问题,今天刺梨占星网(nayona.cn)为大家整理了关于这方面的知识,让我们一起来看下吧!本文目录

如何自学 占星术 占星教程网盘 塔罗牌教程百度网盘

网上有很多关于木星与土星0度,木星和土星哪个温度高的知识,也有很多人为大家解答关于木星和土星 0度的问题,今天刺梨占星网(nayona.cn)为大家整理了关于这方面的知识,让我们一起来看下吧!

本文目录一览:

1、木星和土星 0度

2、木星与土星的资料

3、如果木星撞上土星

4、九大行星各最高温度最低温度?

木星和土星 0度

朱诺号探测器的照片给行星科学家们带来了意想不到的结果。

木星与土星0度,木星和土星哪个温度高

图解:木星最大的卫星,木卫三,被卡西尼号捕获。

研究木星高层大气的行星科学家们在木星极光的亮点中发现了出乎意料的细节,这是由木星最大的两个卫星木卫一和木卫三产生的。

木星与土星0度,木星和土星哪个温度高

图解:哈伯太空望远镜的WFC3相机于2014年所拍摄到木星的真实色彩影像,可清楚看见木星南半球的大红斑

地球的极光是南极光和北极光,看上去像闪闪发光的颜色带,尤其是在极地冬天。但地球并不是唯一拥有极光的星球。“极光在太阳系中很常见。”意大利国家天体物理研究所行星科学家和天体物理学家亚历山德罗·穆拉说。

木星与土星0度,木星和土星哪个温度高

图解:木星上的极光。 三个亮点是由连接到木星卫星埃欧(在左边)、佳里美德(在底部)和欧罗巴(在最底部)的磁流量管创造的。此外,可以看见非常明亮,几乎是圆型的区域,称为主要的鹅蛋形,可以看见和弱极区极光。

地球、木星、土星、天王星和海王星都有极光。它们的极光是在带电粒子撞击被称为电离层的行星大气层的上部时产生的。

“它和霓虹灯没什么区别”穆拉说,“电子jī中气体并激发tā,然后气体就会发光。”

木星与土星0度,木星和土星哪个温度高

图解:木星的极光。在左边远方的亮点是埃欧场线的终点;在图片底部的斑点是甘尼米德和欧罗巴。

极光不仅可以从地面上看到,还可以从太空中看到,美国宇航局的木星轨道“朱诺号”航天器携带了一种名为“木星红外极光贴图”(JIRAM)的仪器,这仪器是专门为研究极光而设计的。

木星与土星0度,木星和土星哪个温度高

地球的月球在磁场之外,距离地球很远,对我们的极光méi有任何影响。但是木星的磁场十分大,它的几颗卫星就在磁场中。穆拉解释说,这意味着磁场可以影响电子在该区域内的运动,将电子集中到一种产生“朱诺号”可见的极光足迹的模式上。

木星与土星0度,木星和土星哪个温度高

使用JIRAM来寻找这些足迹是穆拉和他的同事们一直想做的事情,尽管他们认为他们不会有太大的运气。“它们真的很小。”他说。

但他们运气好,第一次尝试就发现了。在过程中,他们得到了一个惊喜。他们认为měi个足迹都只是一个“大点”——这对试图理解木星磁场的科学家来说是令人兴奋的,但几乎没有夜间谈话的内容。

木星与土星0度,木星和土星哪个温度高

反而,他们发现了更复杂的东西。例如,木卫一产生了一系列均匀分布的亮点,每个亮点的大小都与月球本身差不多。

“这真是出乎意料,我们还没有一个明确的理论模型来解释。”穆拉说。他指出这类似于从流动流体中的障碍物(如洋流中风力涡轮机的塔架)产生的湍流类型。

他说:“足迹的形状xiǎn然与造成足迹的交互作用有关。”但那只是个开始,有时木卫一的“尾巴”有叉状或双翼形状。另一方面,木卫三在木星上空留下了两个足迹,当它横扫木星的时候其中一个跟着另一个。

木星与土星0度,木星和土星哪个温度高

穆拉说,所有这些都告诉了我们一些关于产生极光的卫星的事情。他说,在木卫一的例子中,这颗卫星正在穿过木星的磁层,旋转出带电粒子的漩涡,最终撞击到这颗巨型行星的高层大气。

另一方面,木卫三是太阳系中最大的卫星,直径近5300公里,足以使它拥有自己的磁场。“这是唯一有自己磁场的卫星”穆拉指出。

木星与土星0度,木星和土星哪个温度高

他说,因为这个磁场位于木星的范围内,木卫三的足迹反映了它的磁层的形状。

“基本上,我们有一个远距离的木卫三的磁层图像。”他解释说。

澳大利亚悉尼新南威尔士大学行星天体wù理学家Lucyna Kedziora-Chudcze说,这一发现证明了朱诺号以前所未有的分辨率研究木星的能力。

她自己的工作包括用地面望远镜研究木星的极光。“这张详细的图片让我可以把我的观察结果放在文中。”她说。

参考资料

1.Wikipedia百科全书

2.天文学名词

3. 牵舟- cosmosmagazine

如有相关内容侵权,请于三十日以内联系作者删除

转载hái请取得授权,并注意保持完整性和注明出处

木星与土星的资料

木星 木星古称岁星,是离太阳第五颗行星,而且是最大的一颗,比所有其他的行星的合质量大2倍(地球的318倍)。 公转轨道: 距太阳 778,330,000 千米 (5.20 天文单位) 行星直径: 142,984 千米 (赤道) 质量: 1.900e27 千克 木星(a.k.a. Jove; 希腊人称之为 宙斯)是上帝之王,奥林匹斯山的统治者和罗马国的保护人,它是Cronus(土星)的儿子。 木星是天空中第四亮的物体(次于太阳,月球和金星;有时候火星更亮一些),早在史前木星就已被人类所知晓。根据伽利略1610年对木星四颗卫星:木卫一,木卫二,木卫三和木卫四(现常被称作伽利略卫星)的观察,它们是不以地球为中心运转的第一个发现,也是赞同哥白尼的日心说的有关行星运动的主要依据。 木星在1973年被先锋10号首次拜访,后来又陆续被先锋11号,旅行者1号,旅行者2号和Ulysses号考查。目前,伽利略号飞行器正在环绕木星运行,并将在以后的两年中不断发回它的有关数据。 气态行星没有实体表面,它们的气态物质密度只是由深度的变大而不断加大(我们从它们表面相当于1个大气压处开始算它们的半径和直径)。我们所看到的通常是大气中云层的顶端,压强比1个大气压略高。 木星由90%的氢和10%的氦(原子数之比, 75/25%的质量比)及微量的甲烷、水、氨水和“石头”组成。这与形成整个太阳系的原始的太阳系星云的组成十分相似。土星有一个类似的组成,但天王星与海王星的组成中,氢和氦的量就少一些了。 我们得到的有关木星内部结构的资料(及其他气态行星)来源很不直接,并有了很长时间的停滞。(来自伽利略号的木星大气数据只探测到了云层下150千米处。) 木星可能有一个石质的内核,相当于10-15个地球的质量。 内核上则是大部分的行星物质集结地,以液态金属氢的形式存在。这些木星上最普通的形式基础可能只在40亿巴压强下才存在,木星内部就是这种环境(土星也是)。液态金属氢由离子化的质子与电子组成(类似于太阳的内部,不过温度低多了)。在木星内部的温度压强下,氢气是液态的,而非气态,这使它成为了木星磁场的电子指挥者与根源。同样在这一层也可能含有yī些氦和微量的冰。 最外层主要由普通的氢气与氦气分子组成,它们在内部是液体,而在较外部则气体化了,我们所能看到的就是这深邃的一层的较高处。水、二氧化碳、甲烷及其他一些简单气体分zi在此处也有一点儿。 云层的三个明显分层中被认为存在着氨冰,铵水硫化物和冰水混合物。然而,来自伽利略号的证明的初步结果表明云层中这些物质极其稀少(一个仪器看来已检测了最外层,另一个同时可能已检测了第二外层)。但这次证明的地表位置十分不同寻常--基于地球的望远镜观察及更多的来自伽利略号轨道飞船的最近观察提示这次证明所选的区域很可能是那时候木星表面zuì温暖又是云层最少的地区。 来自伽利略号的大气层数据同样证明那里的水比预计的少得多,原先预计木星大气所包含的氧是目前太阳的两倍(算上充足的氢来生成水),但目前实际集中的比太yáng要少。另外一个惊人的消息是大气外层的高温和它的密度。 木星和其他气态行星表面有高速飓风,并被限制在狭小的纬度范围内,在连近纬度的风吹的方向又与其相反。这些带中轻微的化学成分与温度变化造成了多彩的地表带,支配着行星的外貌。光亮的表面带被称作区(zones),暗的叫作带(belts)。这些木星上的带子很早就被人们知道了,但带子边界地带的漩涡则由旅行者号飞船第一次发现。伽利略号飞船发回的数据表明表面风速比预料的快得duō(大于400英里每小时),并延伸到根所能观察到的一样深的地方,大约向内延伸有数千千米。木星的大气层也被发现相当紊乱,这表明由于它内部的热量使得飓风在大部分急速运动,不像地球只从太阳chù获取热量。 木星表面云层的多彩可能是由大气中化学成分的微妙差异及其作用造成的,可能其中混入了硫的混合物,造就了五彩缤纷的视觉效果,但是其详情仍无法知晓。 色彩的变化与云层的高度有关:最低处为蓝色,跟着是棕色与白色,最高处为红色。我们通过高处云层的洞才能看到低处的云层。 木星表面的大红斑早在300年前就被地球上的观察所知晓(这个发现常归功于卡西尼,或是17世纪的Robert Hooke)。大红斑是个长25,000千米,跨度12,000千米的椭圆,总以容纳两个地球。其他较小一些的斑点也已被看到了数十年了。红外线的观察加上对它自转趋势的推导显示大红斑是一个高压区,那里的云层顶端比周围地区特别高,也特别冷。类似的情况在土星和海王星上也有。目前还不清楚为什么这类结构能持续那么长的一段时间。 木星向外辐射能量,比起从太阳处收到的来说要多。木星内部很热:内核处可能高达20,000开。该热量的产量是由开尔文-赫尔姆霍兹原理生成的(行星的慢速重力压缩)。(木星并不是像太阳那样由核反应产生能量,它太小因而内部温度不够引起核反应的条件。)这些内部产生的热量可能很大地引发了木星液体层的对流,并引起了我们所见到的云顶的复杂移动过程。土星与海王星在这方面与木星类似,奇怪的是,天王星则不。 木星与气态行星所能达到的最大直径一致。如果组成又有所增加,它将因重力而被压缩,使得全球半径只稍微增加一点儿。一颗恒星变大只能是因为内部的热源(核能)关系,但木星要变成恒星的话,质量起码要再变大80倍。 木星有一个巨型磁场,比地球的大得多,磁层向外延伸超过6.5e7千米(超过了土星的轨道!)。(小记:木星的磁层并非球状,它只是朝太阳的方向延伸。)这样一来木星的卫星便始终处在木星的磁层中,由此产生的一些情况在木卫一上有了部分解释。不幸的是,对于未来太空行走者及全身心投入旅行者号和伽利略号设计的专家来说,木星的磁场在附近的环境捕获的高能量粒子将是一个大障碍。这类辐射类似于,不过大大强烈于,地球的电离层带的情况。它将马上对未受保护的人类产生致命的影响。 伽利略号号飞行器对木星大气的探测发现在木星光环和最外层大气层之间另存在了一个强辐射带,大致相当于电离层辐射带的十倍强。惊人的是,新发现的带中含有来自不知何方的高能量氦离子。 木星有一个同土星般的光环,不过又小又微弱。(右图)它们的发现纯属意料之外,只是由于两个旅行者1号的科学家一再坚持航行10亿千米后,应该去看一下是否有光环存在。其他人都认为发现光环的可能性为零,dàn事实上它们是存在的。这两个科学家想chū的真是一条妙计啊。它们后来被地面上的望远镜拍了照。 木星的光环较土星为暗(反照率为0.05)。它们由许多粒状的岩石质材料组成。 木星光环中的粒子可能并不是稳定地存在(由大气层和磁场的作用)。这样一来,如果光环要保持形状,它们需被不停地补充。两颗处在光环中公转的小卫星:木卫十六和木卫十七,显而易见是光环资源的最佳候选人。 1994年7月,苏梅克-利维9号彗星碰撞木星,具有惊人的现象。甚至用业余望远镜都能清楚地观察到表面的现象。碰撞残留的碎片在近一年后还可由哈博望远镜观察到。 zài夜空中,木星是空中最亮的一颗星星(仅次于金星,但金星在夜空中往往不可见)。四个伽利略的卫星用双筒望远镜可很容易的观察到;木星表面的带子和大红斑可由小型天文望远镜观测。迈克・哈卫的行星寻找图表显示了火星以及其它行星在天空中的位置。越来越多的细节,越来越好的图表将被如灿烂星河zhè样的天文程序来发现和完成。九星之王――木星 木星是九大行星中最大的一颗,可称得上是“九星之王”了。按距离太阳由近及远的次序排第五颗。在天文学上,把木星这类巨大的行星称为“巨行星”。木星还是天空中最亮的星星之一,其亮度仅次于金星,比最亮的恒星天狼星还亮。 在我国古代,木星曾被人们用来定岁纪年,由此而被称做“岁星”。西方天文学家称木星为“朱庇特”,朱庇特是罗马神话中的众神之王,相当于希腊神话中无所不能的宙斯。 木星是一个扁球体,它的赤道直径约为142800公里,是地球的11.2倍;体积则是地球的1316倍;而它的质量是太阳系所有行星、卫星、小行星和流星体质量总和的一倍半,也就是地球质量的318倍。 如果把地球和木星放在一起,就如同芝麻与西瓜之比一样悬殊。但木星的密度很低,平均密度仅为1.33克/立方厘米。 木星大气的成分和太阳差不多,zhōng心温度达30000摄氏度,上层大气的温度却在零下140摄氏度左右。木星上还有很强的磁场,表面的磁场强度大约是地球磁场的10倍。木星的内部结构也与众不同,它没有固体外壳,在浓密的大气之下是液态氢组成的海洋。木星的内部是由铁和硅组成的固体核,称为木星核,温度gāo达30000摄氏度。 木星自转速度非常快, 赤道部分的自转周期为9小时50分30秒,是太阳系中自转最快的行星。它的自转轴几乎与轨道面相垂直。由yú自转很快,星体的扁率相当大,jiè助望远镜,就能看出木星呈扁圆状。木星在一个椭圆轨道上以每秒13公里的速度围绕着太阳公转, 轨道的半长径约为5.2天文单位。它绕太阳公转一周约需11.86年, 所以木星的一年大约相当于地球的12年。 木星是太阳系中卫星数目较多的一颗行星。迄今为止我们已经发现木星有16颗卫星,它们与木星组成了一个家族:木星系。 土星 土星(Saturn)轨道距tài阳142,940万千米,公转周期为10759.5天,相当于29.5个地球年,视星等为0.67等。在太阳系的行星中,土星的光环最惹人注目,它使土星看上去就像戴着一顶漂亮的大草帽。观测表明构成光环的物质是碎冰块、岩石块、尘埃、颗粒等,它们排列成一系列的圆圈,绕着土星旋转。土星也是一颗液态行星,直径约为地球的9.5倍,质量为地球的95倍,它的液态表面中含有氢和氦。土星运动迟缓,人们便将它看做掌握时间和命运的象征。罗马神话中称之为第二代天神克洛诺斯,它是在推翻父亲之后登上天神宝座的。无论东方还是西方,都把土星与人类密切相关的农业联系在一起,在天文学中表示的符号,像是一把主宰着农业的大镰刀。中国科普网消息:土星是tài阳系九大行星之一,按离太阳由近及远的次序为第六颗。中国古代称土星为填星或镇星。在1781年发现天王星之前,人们曾认为土星是离太阳最远的行星。在望远镜中可以kàn到土星被一条美丽的光环围绕。土星还有较多的卫xīng,到1978年为止,已发现并证实的有10个,以后又陆续有人提出新的发现。土星在很多方面像木星,如它与木星同属于巨行星,它的体积是地球的745倍,质量是地球的95.18倍。在太阳系九大行星中,土星的大小和质量仅次于木星,占第二位。它像木星一样被色彩斑斓的云带所缭绕,并被较多的卫星所拱卫。它由于快速自转而呈扁球形。赤道半径约为60,000公里。土星的平均密dù只有0.70克/厘米立方米,是九大行星中密度最小的。如果把它放在水中,它会浮在水面上。土星的大半径和低密度使其表面的重力加速度和地球表面相近。土星在冲日时的亮度可与天空中最亮的恒星相比。yóu于光环的平面与土星轨道面不重合,而且光环平面在绕日运动中方向保持不变,所以从地球上看,光环的视面积便不固定,从而使土星的视亮度也发生变化。当土星光环有最大视面积时,土星显得亮一些;当视线正好与光环平面重合时,光环便呈现为yī条直线,土星就显得暗些。二者之间的亮度大约相差3倍。土星绕太阳公转的轨道半径约为14亿公里,它的轨道是椭圆的。它同太阳的距离在近日点时和在远日点时相差约1 .5亿公里。土星绕太阳公转的平均速度约为每秒9.64公里,公转一周约29.5年。土星也有四季,只是每一季的时间要长达7年多,因为离太阳遥远,即使是夏季也十极其寒冷。土星自转很快,但不同纬度自转的速度却不一样,这种差别比木星还大。赤道上自转周期是10小时14分,纬度60度处则变成10小时40分。这就是说在土星赤道上,一个昼夜只有10小时零14分。土星大气以氢、氦为主,并含有甲烷和其他气体,大气中飘浮着由稠密的氨晶体组成的云。从望远镜中看去,这些云像木星的云一样形成相互平行的条纹,但不如木星云带那样鲜艳,只是比木星云带规则得多。土星云带以金黄色为主,其余是橘黄色、淡黄色等。土星的表面同木星一样,也是流体的。它赤道附近的气流与自转方向相同,速度可达每秒500米,比木星上的风力要大得多。土星极地附近呈绿色,是整个表面最暗的区域。根据红外观测得知,云顶温度为-170℃,比木星低50℃。土星表面的温度约为-140℃。土星表面有时会出现白斑,最著名的白斑是1933年8月发现的,这块白斑出现在赤道区,呈蛋形,长度达到土星直径的1/5.以后这个白斑不断地扩大,几乎蔓延到整个赤道带。由于这颗行星表面温度较低而逃逸速度又大(35.6公里/秒),使土星保留着几十亿年前它形成时所拥有的全部氢和氦。因此,科学家认为,研究土星目前的成分就等于研究太阳系形成初期的原始成分,这对于了解太阳内部活动及其演化有很大帮助。一般认为土星的化学组成像木星,不过氢的含量较少。土星上的甲烷含量比木星多,而氨的含量则比木星少。1973年 4月美国发射的行星际探测器“先驱者”11号发现土星有一个由电离氢构成的广延电离层,其高层温度约为977℃。观测结果表明,土星极区有极光。目前认为,土星形成时,起先是土物质和冰物质吸积,继之是气体积聚。因此,土星有一个直径20,000公里的岩石核心。这个核占土星质量的10%到20%,核外包围着5,000公里厚的冰壳,再外面是8,000公里厚的金属氢层,金属氢之外是一个广延的分子氢层。1969年,一架飞机在地球大气高层对土星的热辐射作了红外观测,发现土星和木星一样,它辐射出的能量是它从太阳接收到的能量的两倍。这表明土星和木星一样有内在能源。后来“先驱者”11号的红外探测证实了这一点,测得土星发出的能量是从太阳吸收到的2.5倍。土星的光环1610年,意大利天文学家伽利略观测到在土星的球状本体旁有奇怪的附属物。1659年,荷兰学者惠更斯证认出这是离开本体的光环。1675年意dà利天文学家卡西尼,发现土星光环中间有一条暗缝,后称卡西尼环缝。他还猜测,光环是由无数小颗粒构成。两个多世纪后的分光观测证实了他的猜测。但在这二百年间,土星环通常被看做是一个或几个扁平的固体物质盘。直到1856年,英国物理学家麦克斯韦从理论上论证了土星环是无数个小卫星在土星赤道面上绕土星旋转的物质系统。土星环位于土星的赤道面上。在空间探测以前,从地面观测得知土星环有五个,其中包括三个主环(A环、B环、C环)和两个暗环(D环、E环)。B环既宽又亮,它的内侧是C环,外侧是A环。A环和B环之间为宽约5,000公里的卡西尼缝,它是天文学家卡西尼在1675年发现的。B环的内半径 91,500公里,外半径116,500公里,宽度是25,000公里,可以并排安放两个地球。A环的内半径121,500公里,外半径137,000公里,宽度15,500公里。C环很暗,它从B环的内边缘一直延伸到离土星表面只有12,000gōng里处,宽度约19,000公里。1969年在C环内侧发现了更暗的D环,它几乎触及土星表面。在A环外侧还有一个E环,由非常稀疏的物质碎片构成,延伸在五、六个土星半径以外。1979年9月,“先驱者” 11号探测到两个新环――F环和G环。F环很窄,宽度不到800公里,离土星中心的距离为2.33个土星半径,正好在A环的外侧。G环离土星很远,展布在离土星中心大约10~15个土星半径间的广阔地带。“先驱者”11号还测定了A环、B环、C环和卡西尼缝的位zhì、宽度,其结果同地面观测相差不大。“先驱者”11号的紫外辉光观测发现,在土星的可见环周围有巨大的氢云。环本身是氢云的源。除了A环、B环、C 环以外的其他环都很暗弱。土星的赤道面与轨道面的倾角较大,从地球上看,土星呈现出南北方向的摆动,这就造成了土星环形状的周期变化。仔细观测发现,土星环内除卡西尼缝以外,还有若干条缝,它们是质点密度较小的区域,但大多不完整且具有暂时性。只有A环zhōng的恩克缝是永久性的,不过,环缝也不完整。科学家认为这些环缝都是土星卫星的引力共振造成的,犹如木星的巨大引力摄动造成小行星带中的柯克伍德缝一样。“先驱者”11号在A环与F环zhī间发现一个新的环缝,称为“先驱者缝”,还测得恩克缝的宽度为876公里。由观测阐明土星环的本质,要归功于美国天文学家基勒,他在1895年从土星环的反射光的多普勒频移发现土星环不是固体盘,而是以独立轨道绕土星旋转的大群质点。土xīng环掩星并没有把被掩的星光完全挡住,这也说明土星环是由分离质点构成的。1972年从土星环反射的雷达回波得知,环的质点是直径介于4到30厘米之间的冰块。探测器传回的土星照片让kē学家非常吃惊,在近处所看到的土星环,竟然是碎石块和冰块yī大片,使人眼花缭乱,它们的直径从几厘米到几十厘米不等,只有少量的超过1米或者更大。土星周围的环平面内有数百条到数千条环,大小不等,形状各异。大部分环是对称地绕土星转的,也有不对称的,有完整的、比较完整的、残缺不全的。环的形状有锯齿形的,有辐射状的。令科学家迷惑不解的是,有的环好象是由几股xì绳松散的搓成的粗绳一样,或者说像姑娘们的发辫那样相互扭结在一起。辐射状的环更是令科学家大开了眼界而又伤透了脑筋,组成环的物质就象车轮那样,步调整齐的绕着土星转,这样岂不要求那些离的越远的碎石块和冰块运动的速度越快吗?这显然违背了目前已经掌握的物质运动定律。那么,这是一个什么样的规律在起作用呢?目前仍在探索中。最美丽的行星――土星 土星是太阳系九大行星之一,按离太阳由近及远的次序是第六颗;按体积和质量都排在第二位,仅次于木星。它和木星在很多方面都很相似,也是一颗“巨行星”。从望远镜里看去,土星好象是一顶漂亮的遮阳帽飘行在茫茫宇宙中。它那淡黄色的、橘子形状的星体四周piāo拂着绚烂多姿的彩云,腰部缠绕着光彩夺目的光环,可算是太阳系中最美丽的行星了。 古时候,我们称土星为“镇星”或“填星”,而西方则称之为克洛诺斯。无论是东方还是西方,都把这颗星与人类密切相关的nóng业联系在一起。 土星是扁球形的,它的赤道直径有12万公里,是地球的9.5倍, 两极半径与赤道半径之比为0.912,赤道半径与两极半径相差的部分几乎等于地球半径。土星质量是地球的95.18倍,体积是地球的730倍。虽然体积庞大,但密度却hěn小,每立方厘米只有0.7克。 土星内部也与木星相似,有一个岩石构成的核心。核的外面是5000公里厚的冰层和8000公里的金属氢组成的壳层,最外面被色彩斑斓的云带包围着。土星的大气运动比较平静,表面温度很低,约为零下140摄氏度。 土星以平均每秒9.64公里的速度斜着身子绕太阳公转,其轨道半径约为14亿公里,公转速度较慢,绕太阳一周需29.5年,可是它的自转很快,赤道上的自转周期是10小时14分钟。土星的卫星土星的美丽光环是由无数个小块物体组成的,它们在土星赤道面上绕土星旋zhuǎn。土星还是太阳系中卫星数目最多的一颗行星,周围有许多大大小小的卫星紧紧围绕着它旋转,就象一个小家族。到目前为止,总共发现了23颗。土星卫星的形态各种各样,五花八门,使天文学家们对它们产生了极大的兴趣。最著名的“土卫六”上有大气,是目前发现的太阳系卫星中,唯一有大气存在的天体。土星的卫星至少有18个,其中9个是1900年以前发现的。土卫一到土卫十按距离土星由近到远排列为:土卫十、土wèi一、土卫二、土卫三、土卫四、土卫五、土卫六、土卫七、土卫八、土卫九。土卫十离土星的距离只有159,500gōng里,仅为土星赤道半径的2.66倍,已接近洛希极限。这些卫星在土星赤道平面附近以近圆轨道绕土星转动。 1980年,当旅行者号探测器飞过土星时,在原有的九颗卫星(土卫一、土卫二、土卫三、土卫四、土卫五、土卫六、土卫七、土卫八和土卫九)基础上,又发现了八颗新的卫星。但是很难说土星究竟有多少卫星。一些组成土星光环的较大的粒子实际上也许就是小卫星。 土星在太阳系中拥有的卫星最多。跟mù星卫星不一样,土星卫星不能简单地以成分和密度来归类划分。"旅行者号"所发现的卫星显示出复杂多样的特征。土卫四和土卫五的某些地域非常坑坑洼洼,另一些地方则平坦得多。表面的白色条状表明在这两颗卫星上曾经有水冒出。 土星众多卫星中,最令我们感兴趣的是土卫六--太阳系中最大的卫星之一。"旅行者号"的科学家惊奇地发现,它有一层厚厚的~大气层~--密度比地球大气层高百分之六十。 土卫六非常寒冷,表面温度约为零下150℃。在这yàng的温度条件下,甲烷以气态、液态、固态三种状态同时存在。行星学家克拉克・查普曼这样说道:"土卫六上的甲烷可能会象地球上0℃的水。""穿过北极的淤泥地带,可隐约见到土卫六的表面景观……由甲烷和氨冰块组成的岩石大多数被埋在一种粘性的油层之下。长时期内来自柏油烟雾的微小尘埃粒子不断聚集……土卫六浓稠的液态甲烷与海洋被甲烷冰雾令人窒息的雾霭所遮挡。" 极小的土卫一有一个创痕,那是太阳系中最明显的创痕之一。一个巨大的~陨石坑~显示出它曾受过一次几乎将其一分为二的重创。重创之下的这个巨大陨石坑直径约为整个星球的三分之一。它的表面是如此的坑坑洼洼,使得冰层被切成了片片碎块。在它的表面上行走,宛如走在一个巨大的雪锥之上。土卫二有一个断层系统以及从未受过陨石冲击的大区域。陆潮受热可能在重建表面的过程中发挥了重大作用。这种活动似乎就发生在最近,这也可以用来解释它的表面为何光彩夺目。土卫二几乎反射所有的光线,其冰冻的表面可能会被来自内部的水不断覆盖。土卫八一侧很亮,另一侧很暗。亮的那侧能将大约一半照射到的光反射出去,而另一侧几乎一片黑暗。黑色物质里可能包含着有机碳--生命必需的组成成分之一。土卫七看上去象是较大物体的一个碎块。它不规则的形状和极度坑坑洼洼的表面使它看似一个稍大的~小行星~。这颗卫星的碎片现在可能已进入了土星光环。土卫三也是从明显的宇宙暴力之中幸存下来的。一条巨大的沟壑从卫星的一端伸展到另一duān。这个长狭谷看起来是由内部力量而引起的。它内部凝固和膨胀的压力使其表面产生裂缝。科学家们无法解释一个至少百分之八十由水冰组成的卫星是如何经受住这样的地质活动的。“旅行者号”探测器的探索结果使人们深信那曾经支配le土星早期历史的猛力作用。土星卫星看起来象是无尽爆炸袭击的幸存者。它们明亮的冰封表面受到了无数陨石的创伤。 但是这些卫星中有一个与早期的地球非常相似。也许某一天,有着浓厚大气层的土卫六能够进化出顽强的生命。土星土星是太阳系中最美丽的行星。 它的体积和质量仅次于木星,也属于巨行星。土星在冲日时的视星等为-0.4等,亮度可与天空中最亮的恒星相比。我国古代把土星称为“镇星”;西方人叫它“萨图恩”,这是罗马神话中农神的名字,并把镰刀作为土星的天文符号。在望远镜中,它那淡黄色的、桔子形状的星体上漂浮着明暗相间的云带,腰间缠绕着一道绚丽多彩的光环,极区呈浅蓝色,妩媚动人。 比水还轻 土星和其他行星一样,也围绕太阳在椭圆轨道上运动。土星绕太阳公转的轨道半径约为9.54天文距离单位(约14亿公里)轨道的偏xīn率为0.056,轨道面与黄道面交角为2°5′,绕太阳公转一周约29.5年,公转平均速度约为9.6公里/秒。土星的自转很快,仅次于木星,其自转角速随纬度而不同,在赤道上自转周期为10小时14分,在纬度60°处为10小时40分。由于快速自转,使得它的形状变扁,是太阳系行星中形状最扁的一个。土星表面也有沿赤道伸展的条纹带,表面为云层所覆盖。 用天文望远镜观察土星,看到的是一个带光环的天体。土星的赤道半径约为6万公里,其赤道半径与极半径相差5000多公里。体积为地球的740倍,质量为地球的95倍。在太阳系的行星中,土星的质量和大小仅次于木星。 3平均密度是0.7克/厘米 ,比水的密度还要小。由于土星的密度太小,其表面重力加速度和地球差不多 (为地球的1.07)。在土星上,物体要有37公里/秒的速度才能脱离土星,比地球表面的脱离速度大得多,因此土星能把大量的大气束缚住。 土星有稠密的大气,其大气的主要成分是氢和氦,还有甲烷、ān等。通过天文望远镜,我们可以看到土星表面也有一些明暗交替的带纹平行于它的赤道面,带纹有时也会出现亮斑、暗斑或白斑。白斑的出现不很稳定,最著名的白斑于1933年8月被英国天文爱好者W・T・海用小型天文望远镜发现。此白斑位于土星赤道区,呈蛋形,长度达土星直径的1/5。以后这块白斑逐渐扩大,几乎蔓延到土星的整个赤道带。 土星有一个光环。它是伽利略于1610年用望远镜发现的。当时伽利略把土星光环误认为是土星左右两侧长出的“耳朵”。在长期的观测中发现,环带中间由两条暗缝分隔成三个环。靠外的A与靠内的B环之间被一条称为卡西尼的缝(它是1675年由法国天文学家卡西尼发现的)隔开;C环靠近土星本体,但较暗弱。1966年和1969年,天文学家用光电测光方法又发现C环内有一层更暗的D环;A环外又有一层E环,环缝分别命名为“恩克缝”和 “法兰西缝”。A、B、C环为主环,A环宽度为14400公里,B环为25800公里,C环为20800公里,D环几乎触及土星表面,E环延伸到5~6个土星半径以外。

如果木星撞上土星

我是学工程的,怎么办捏?

以下纯属猜测。

两者相撞的规模是很大,但是还没有超过人lèi的想象力。因为我们现在可以观测到银河系规模的相撞。

两颗行星都是液态行星。两者相互靠近时,双方都会被潮汐力撕扯成碎片,然后被扯向共同质量重心。与其说是撞击,不如说是融合,就好像是一个碗里的两个鸡蛋黄被一起打散,然后混合到一起。

行星被撕碎和落入共同中心的过程会产生巨大的热量,可能会造成局部的hé聚变,但是这样的核聚变不能持续,规模也不大。更类似于一种间歇性的“闪烁”。

在融合过程中,一部分物质会被甩出去或者吹出去。然后产生一个比较大的新天体。这个新天体的质量仍然不够大,不能形成恒星。但是撞击过程产生的热量会保持相当长的一段时间,使得新行星的温度会比较高。

我补充一下吧。

我们知道,地球的半径约为6300千米,而地球距离太阳约为1.5亿千米。地球受到的光辐射大约是太阳全部光辐射的22亿分之一,那么如果太阳发生爆炸,爆炸投射到地球上的能量也只有总能量的22亿分之一。木星距离太阳较远,但是直径较大,计算下来它承受的太阳能量约为4.7亿分之一,而木星的质量却为太阳的1000分之一。也就是说,如果我们把太阳整个炸成粉碎,那么也只有4.7亿分之一的物质会落在木星上,仅相当于木星质量增加了40万分之一。而超新星爆炸的物质抛射速度最大也就是10000千米/秒。这些物质只能给木星带来25米/秒的速度增量。而木星的公转速度为13千米/秒,速度改变量仅千分之二。

虽然我没有进行进一步的计算,但是我认为,就算太阳发生爆炸,也不足以把行星推走,最多使行星的轨道发生轻微的改变。而且这种改变主要来自于太阳的质量减少。

如果你不愿意相信的话,我还可以从另一个方面证明:

超新星爆炸的能量可以达到1E43焦耳,相当于太阳100亿年的总辐射量,而太阳的年龄已经有50亿年了,那么50亿年以来因为光压,木星的轨道改变了多少呢?再过50亿年,它又会改变多少呢?

另一个问题,有关核聚变的“闪烁”问题。持续的核聚变需要两个条件,一个是温度,另一个是约束。我问你一个问题,我们都知道海水里含有大量的氢元素,那么我们把一个氢弹扔到海洋里面,会不会将整个海洋点着?显然不可能!要知道美国和苏联都曾经实验过水下核试验,也没有炸掉整个地qiú。

核聚变产生的巨大能量会把没yǒu来得及发生反应的氢元素抛射出去,然后爆炸中心的氢元素耗尽,核聚变自然就停止了。因此,持续的核聚变必须要有约束,防止核聚变原料被核聚变本身扔出去。天体中的约束力主要来自于万有引力,因此,对于质量不够的天体,即使点着它,核反应也不能持续。我所说的“闪烁”,是在撞击过程中局部产生足够高的温度和压力,从而发生局部的核聚变反应。而这种核聚变由于缺乏约束,因此在shùn间就会熄灭。所以我称之为“闪烁”。

另外upQuark朋友对于碰撞温度的计算方法是正确的。不过我手边没有这方面的工具书没有办法给出换算结果。如果说60千米/秒的木星逃逸速度换算温度为18万度,那么碰撞产生的最大温度就应该在这个数值上下,那么也就是说,核聚变绝对不可能发生。

在此感谢upQuark朋友。

50亿年的能量辐射和一次性爆发50亿年的能量为什么不能同日而语呢?你现在所说的“显然”仅仅是想象而已,计算的结果并不一定和你的想象一致。如果一个太阳帆在太阳风下加速50亿年,那么它的速度无论如何都接近光速了吧。在真空中没有阻力,微小的动能增量也会积累起来。50亿年逐渐增加的dòng能和一次性增加的动能并不会有什么区别。

而且我前面已经有计算过,即使以最大的超新星爆发的威力将太阳彻底炸掉,木星的速度增量也不过25米/秒。这个速度增量是完全不足以把木星移动到土星轨道上的。如果你有所怀疑,可以自己计算一下。

九大行星各最高温度最低温度?

首先更正一下,是太阳系八大行星.

水星:水星大气非常稀薄,昼夜温差很大,阳光直射处温度高达427℃,夜晚降低到-173℃.

金星:金星大气非常浓厚,而且97%以上是二氧化碳,因此温室效应非常强烈,表面温度达480℃左右,昼夜季节的差别.

地球:由于地域和季节不同而不同.南极最冷时可达零下五十摄氏度;最热的地方则可达到零上六十摄氏度.

火星:火星表面的温度比地球低30℃以上,昼夜温差常超过100℃.在火星赤道附近,最高温度为20℃左右,两极地区的最低温度可达-139℃.

木星:木星表面的温度很低,根据理论计算,它表面的有效温度应为105K,但地面观测和行星际探测器测得的结果均高于理论值,对木星的红外观测也表明,木星辐射的热能为它接收到的太阳热能的两倍,这说明木星内部存在着热源.

土星:大气中飘浮着由稠密的氨晶体组成的云,有彩色的亮带和暗纹,但比木星大气中的云带规则.土星表面温度约为-140℃,云顶温度为-170℃.行星探测器“先驱者”11号发现土星上有一个由电离氢构成的电离层,电离层温度约为977℃.

天王星:表面覆盖着浓厚的大气,由于距太阳较远,接收到的太阳辐射很少,所以表面温度很低,地面guān测表明,在天王星高层大气中气压相当于0.4个地球大气压处,温度仅为-214℃.

海王星:约为-193 到 -153°C.

冥王星:表面温度在-220°c以下

木星与土星0度,木星和土星哪个温度高

以上就是关于木星与土星0度,木星和土星哪个温度高的知识,后面我们会继续为大家整理关于木星和土星 0度的知识,希望能够帮助到大家!

点击联系需要东西方神秘学学习资料,专业的咨询

有需要联系v;hx-hx3 有需要联系v;hx-hx3 有需要联系v;hx-hx3 如果对你有一点点帮助,欢迎打赏~~~  
本文来自用户投稿或整理于网络,版权归作者所有,如有侵权,请联系我们删除。
(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
网络投稿网络投稿

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

记得加这个v;hx-hx3