太阳与水星呈0度,太阳vs水星

如何自学 占星术 占星教程网盘 塔罗牌教程百度网盘

网上有很多关于太阳与水星呈0度,太阳vs水星的知识,也有很多人为大家解答关于太阳与水星呈现零度的问题,今天刺梨占星网(nayona.cn)为大家整理了关于这方面的知识,让我们一起来看下吧!

本文目录一览:

1、太阳与水星呈现零度

2、水星离太阳这么近,为什么晚上会有零下100多度?

3、关于宇宙中的行星和恒星可不可以居住,为什么?

太阳与水星呈现零度

太阳与水星呈0度,太阳vs水星

作者按

量子计算技术的高速发展,使得稀释制冷机的需求量大幅增加,也因此进入越来越多人的视野。稀释制冷机,这一目前唯一商业化的10mK量级极低温设备。三年前,我曾写过yī篇《接近绝对零度的死寂,却是探索量子计算的秘境》,一个小心愿是希望这一技术能得到更多人的关注,促进国内极低温技术的研发和商业化。如今,笔者很欣慰地看到,国内已经有好几家单位造出了zì己的稀释制冷机,极低温也突破了10mK关口,形势喜人。时隔三年,我还是想再写一篇,有些内容或有重复之处,但我的小心愿却有了微妙的变化:我希望国内相关部门和人员能够意识到,仅仅突破稀释制冷技术是不够的,在极低温“卡脖子”的地方还有它处,且风险很高。去年美国国家科学基金会(NSF)发布一项指南,大意是未来随着量子计算的发展,氦3的供应量会严重不足,因此鼓励美国相关科研人员开发能够替代氦3,或者替代稀释制冷的极低温技术,以应对即将到来的风险。注意到美国是全球唯二的氦3生产大国,尚且这样布局,我国目前尚没有氦3生产能力,岂不是更应关注这一风险?正好朋友约我谈谈“绝对零度”,于是就有了这篇稿子的构思和成篇。

撰文 | 无邪

引子

每天出门之前,我都会习惯性地看一下天气预报,除了阴晴风雨,我最关注的一个数值是温度,这很大程度上决定了我该穿什么衣服出门。这个与我们息息相关的物理参数,描述了物体的冷热程度,我们都知道水在零度以下会结bīng,在100℃会沸腾,夏天需要开空调来降温消暑,冬天则需要暖气来保持室内的温暖。今天准备聊的话题,正是温度,特别是物理上的极限温度——绝对零dù。

绝对零度,是这个宇宙中能够达到的最低温度,因为在这个温度下,所有的物体将被彻底冻结,组成物质的原子、分子将完全jìng止下来。当然,这是从经典的角度来说的,考虑量子效应的话,即便在绝对零度,仍存在量子涨落。不过,在讨论这个话题的时候,我们暂时可以抛开量子效应不谈,这不太会影响我们的理解。

物理学中的温度

首先我们来看看温度这个概念,从物理学角度来讲,它就不再是冷热程度那么简单了。我们日常接触到的物质,如一杯咖啡、一本书、一把椅子,他们都是由非常非常多的原子或分子组成的,大概有多少呢?一瓶矿泉水中大约包含1.6×10^25个水分子,假如我们能对其中的水分子数数,每秒钟数3个,大概需要数十七亿亿年!而我们宇宙诞生至今也才不到140亿年。在一杯静置的水中,其实里面的分子是躁动不安的,时时刻刻想摆脱周围分子的束缚。处于表面的一些分子的确能成功地逃逸出来,获得自由,这个过程就是“蒸发”。当温度达到100℃的时候,水分子变得如此暴躁,以至于内部的一些分子也开始大量逃脱,形chéng气泡又很快破裂,于是就形成了“沸腾”现象。

太阳与水星呈0度,太阳vs水星

沸腾丨图片来源:passionpatisserie.fr

从这里,我们就能体会到,温度,是表示原子或分子“不ān”程度的物理量。这种不安分,可以用热运动的能量,或者说动能来描述。每个原子或分子有三个空间运动自由度(x,y,z),每个自由度携带的平均动能为1/2kBT,这里的kB是玻尔兹曼常数,为了纪念开辟统计热力学的先驱玻尔兹曼(Ludwig Eduard Boltzmann,1844-1906)而命名。T就是温度。温度最早是在研究气体分子运动时引入的,用来衡量气体系综的平均动能;现在,这个概念也被推广到各种接近自由运动(相互作用很小)的粒子系综,比如固体中的巡游电子、原子气团,乃至宇宙中的各种高能活动。

物质中存在着很多相互作用,也就是力。我们已知的力包括强相互作用、弱相互作用、电磁相互作用和引力相互作用。在我们日常生活这个层面上,展现的最多的是电磁相互作用。所有这些力与物质的热运动以及其他形式的力相互竞争,一旦某一种力占据优势时,物质就会形成一种新的有序结构(并相应地失去一些对称性,这就是所谓的duì称性破缺)。因此,随着温度的变化,物质会逐级展现出不同的现象,这是物理学最奇妙的地方。

举liǎng个例子,根据现有的标准宇zhòu模型,我们的宇宙始于一场大爆炸,大爆炸之初,由于温度极高,所有的力都是统一的。随后温度从10^32℃(普朗克温度)迅速下降到10^27℃,引力开始分离出来,然后是强力,最后是电磁力和弱力。在这个过程中,先是电子、光子、夸克等形成,然后夸克凝聚成质子、中子等基本粒子,再之后进一步冷却,质子、中子又凝聚成原子核,再之后原子核俘获电子,形成原子。再进一步冷却,不同原子通过外层电子的相互作用,又形成了千奇百态的分子。这些物质最终构成了我们的宇宙万物,到今天,整个宇宙已经冷却到了只有2.7K(微波背景辐射温度)(K是绝对温标,以绝对零度作为0K,我们日常生活温度大约是300K),也就是大约-270℃。但故事没有结束,宇宙还将jì续冷却,直至逼近“绝对零度”(谁也不知道宇宙会不会有那一天,到那一天又会如何?)。

另一个例子是超导现象。常温下,金属中的电子以非常高的速度做随机的热运动,有多快呢?大约是8万米/miǎo。(电子还有一个由量子力学效应——泡利不相容原理决定的费米速度,比热运动速度要高两个数量级,在这里可以先不kǎo虑。)另一方面,电子在晶格中运动导致的晶格畸变会形成一个约束能,大约在毫电子伏(meV)量级。随着温度降低,热运动速度也逐渐降低,当热运动的动能低于上述约束能时,电子就会受这个约束能影响而“配对”,变成“玻色子”。而玻色子由于不受泡利不相容原理影响,又可以jìn一步凝聚到基态,于是,就发生了所谓“超导”相变。相变之后,电流就由这个超导凝聚相来承载了,于是就有了零电阻效应和完全抗磁效应,它们为很多应用提供了特别好用的物理工具。比如说磁体,我们现在终于可以绕制出超强磁场(超过20特斯拉)的磁体,医院里的核磁共振成像设备,用的就全都是超导磁体;再比如,超导量子干涉仪,可以探测极其微弱的磁场;还有超导量子比特,这是目前最有前景的量子计算技术方案之一。

气体液化之路:低温小史

这就是物理学家们总要想方设法操控温度的原因。在粒子物理方面,科学家们想尽办法将温度升到极高,从而发现那些室温下被禁闭的物理过程。在凝聚态物理方面,科学家们则shè法不断降低温度,直至逼近绝对零度,让各种低能的集体物理效应表现出来。上面讲到的超导现象,就是荷兰物理学家昂内斯(Heike Kamerlingh Onnes,1853-1926)在成功jiāng氦气液化,温度降至4.2K之后,在水银中测到了电阻的突然跳变,从而打开了超导物理的大门。

我们还是先沿着降低温度这条路径来讲,无他,我比较熟。在获取低温的道路上,有一位我们非常熟悉的先驱,那就是法拉第(Michael Faraday,1791-1867)——没错,就是那位发现电磁感应定律的法拉第。他在研究氯气的化学性质时,yī不小心就得到了液态氯,他总结出来是低温和高压所导致的。从此一发不可收拾,一路液化了当时几乎所有已知的气体,只有氧气、氮气、氢气等气体搞不定,于是他认定这些气体是“永久气体”(permanent gases)。后来的事实当然证明他错了,不过搞气体液化毕竟是他的“副业”,他不小心液化氯气,是因为他当时是化学家戴维(Humphry Davy,1778-1829)的助手,主业其实是搞化学。

接下来法国人卡耶泰(Louis Paul Cailletet,1832-1913)液化了氧气hé氮气,他用到了一个重要的效应——焦耳-汤姆森效应(Joule–Thomson effect)。现在的稀释制冷机中,有一个重要de部件就叫“焦汤换热器”,是将氦气液化的重要环节。氮气液化将低温极限推到了-196℃(77K)。但更重要的人物是杜瓦(James Dewar,1842-1923)。现在的低温储罐,我们一般就叫作“杜瓦”,就是他发明了这种可以长久保存低温液体的真kōng绝热瓶。家里用的开水壶,其实就是一个“杜瓦”。杜瓦的重要贡献是液化了氢气,采用的方法是

太阳与水星呈0度,太阳vs水星

或许因为当年氦气资源缺乏,我国早期的很多低温实验就是用液氢来做的。当我研究生入学的时候,陈兆甲老师给我们做新生教育,jiǎng了一个早年低温实验的事故,令我印象极为深刻:有一次,一个用完了的液氢储罐瓶口结了冰,当时两位苏联专家就想化kāi这些冰,而所用的办法竟是yòng酒精灯kǎo!结果就是一声巨响,把楼炸开了口。好在当时政治学习会议较多,我们自己的专家们都去另一个楼开会去了……

言归正传,杜瓦de心愿是继续攻克最后一种“永久气体”——氦气的液化,可xī这种气体实在太稀缺了,他一直凑不够,最终未能遂愿。而接过这一棒的,是昂内斯,他当时是荷兰莱顿大学的物理实验室负责人。在他带领下,他们迅速将杜瓦的逐级制冷技术发扬光大,在钞能力加chí下,建立了大型的液化工厂;昂内斯利用汉普森-林德循环(Linde-Hampson cycle)、低温杜瓦和焦耳-汤姆逊效yīng,成功将氦气液化了,温度极限进一步推进到了-269℃度,后来利用减压降温技术,又进一步推进到了1.5K,也就是约-272℃。他也因此获得了“绝对零度先生”的称号。昂内斯在液氦加持下又首次发现了超导现象,那就是另一个大故事了。

氦液化技术成熟之后,液氦就成为了目前应用最为普遍的低温制冷液体,除了温度低的原因外,更重要的氦气是惰性气体,无毒无害,不会爆炸,比液氢安全得多。

太阳与水星呈0度,太阳vs水星

昂内斯(右)和他的首席技师Gerrit Flim,在 Kamerlingh Onnes莱顿实验室氦液化器前。丨图片来源:Leiden Institute of Physics.

冲击绝对零度

不过,1.5K距离绝对零度还有一段距离,冲击绝对零度的路还远未结束。氦气有一种同位素氦3(3He),它包含两个质子、一个中子。氦3在自然界的相对丰度仅百万分之一(1.38×10-6),它其实是核聚变非常理想的燃料,但自然界的含量实在太低了,做燃料不太现实。据shuō月球和水星上有较多的氦3,但开采也许得是几十上百年以后的事情了。在极低温的这“最后一公里”上,氦3的作用就非常大了,简直就是上天馈赠。

首先氦3的液化wēn度更低,通过对氦3的减压降温,可以将温度进一步推至0.3K。并且,氦3溶解在氦4(也就是普通的液氦)中,当温度降低到大约0.8K以下时,会发生两相分离,形成一个浓相和一个稀相,而当氦3原子穿过两相分离的界面时,会带走一部分热量,这个过程理论上可yǐ一直持续到绝对零度。这就成为了目前固体极低温获取的最重要技术——稀释制冷技术的基础。稀释一词的含义也正在此。稀释制冷可以将温度降至几个mK,且已经商业化。

随着量子计算的发展,稀释制冷机的需求量大大增加,已经有很多国内的科学家意识到发展自主可控的稀释制冷机的必要性。几年前我在中科院物理所的时候曾说服几位搞低温的老朋友一起做,尽管我后来离开了物理所,但他们仍不负众望,在2021年成功将温度降至10mK以下,并以重大成果的形式在当年的中关村论坛上发布。我由衷为他们高兴。

太阳与水星呈0度,太阳vs水星

中国科学院物理研究所无液氦稀释制冷机原型丨图片来源:cas.cn

现在国内立项要做稀释制冷机的单位和公司已经不少,有些单位将其称为“卡脖子技术”,我认为有点言过其实了。正所谓稀释制冷机可得,氦3不可得,实际上真正卡脖子的地方不在“稀释制冷”而在氦3,毕竟稀释制冷技术诞生至今已经超过半个世纪了。德国魏茨曼科学研究所的Urlig发表过大量文献,将无液氦稀释制冷机技术讲得很清chǔ了,有极低温基础,用心用力去做,肯定能做出来(我这里绝不是说稀释制冷机容易做,事实上这仍是一项技术挑战)。但氦3是一种几乎无法自然提取的资源,全世界仅有美国和俄罗斯有商业化生产氦3的能力,大部分都是配额供应。如今,美国连同欧洲对我国氦3供应全面禁止,我们的氦3来源变成了俄罗斯独家,假如量子计算真的兴起,且不提根本供应不起,这独家供应本身就是一个极大的风险。

我们有没有办法来应对呢?理论上是有的。一方面,可以探寻极低温获qǔ的替代方案,比如核jué热去磁或顺磁盐去磁,事实上我国科学家中科院物理所的吕力、景秀年,另外还有北大的林熙教授等,利用核绝热去磁技术(当然是在稀释制冷的基础上),已经将极低温推至1mK以下了。不过核绝热去磁技术目前来看很难应用于量子计算,因为它需要反复加磁场,而量子比特很怕磁场。这里只是举这个例子,我相信未来会产生更好的极低温技术。

太阳与水星呈0度,太阳vs水星

我不是zuò核反应的,也就能硬着头皮说到这了。实际上的技术实现,肯定比我说的要难很多,比如如何提高气体提馏效率(覆盖气体有很高的损耗率)、如何将氦3气中的放射性氚(毕竟二者质量几乎一样)和其他杂气分离出去等等。零点几立方米的氦3气,看似微不足道,但一台稀释制冷机的氦3气用量的典型值,也就二三十升,如果能实现连续生产,还是能解燃眉之急的。

到此,我们的绝对零度之旅就告一段落了。我们是不是还可以将温度降到更低?答案肯定为是。不过永远也到不了绝对零度,这是热力学第三定律的核心内容,本质上,是因为这个宇宙中不存在真正完全孤立的系统。科学家通过对很少量的原子系综做激光减速和蒸发,可以将其温度降低至微K量级,这就是超冷原子。冷原子是另一个很有意思的量子计算/量子模拟候选体系,超出了我的知识范围,就不做探讨了。

科学家的低温之旅还会继续。

太阳与水星呈0度,太阳vs水星

出品:科普中国

特 别 提 示

1. 进入『返朴』微信公众号底部菜单“精品专栏“,可查阅不同主题系列科普文章。

2. 『返朴』提供按月检索文章功能。关注公众号,回复四位数组成的年份+月份,如“1903”,可获取2019年3月的文章索引,以此类推。

版权说明:欢迎个人转发,任何形式的媒体或机构未经授权,不得转载和摘编。转载授权qǐng在「返朴」微信公众号内联系后台。

水星离太阳这么近,为什么晚上会有零下100多度?

水星的质量很小,所以不能有像地球一样的大气层,大气层就像一张被子一样,在白天起的是隔离紫外线的作用,避免日照面的温度过高,在晚上起的是反射和保护地面散发白天的热量,避免温度流失过快,造成温度过低。宇宙的温度是很低的,好像是零下270°左右,所以水星昼夜温差相当的大。个人意见,仅供参考。

关于宇宙中的行星和恒星可不可以居住,为什么?

并不是这样,距离恒星太近,行星表面温度太高,距离恒星太远,行星表面温度却会太低。

拿太阳系来说,水星、金星距离太阳比地球近,因此地表温度太高,不适宜居住。而火星距离太阳太远,地表温dù在零度以上。地球刚好处于二者中间,地表温度适宜居住。但是,满足距离因素并不能说明就可以居住,很多行星的地面温度和地球相近,但是并不适宜居住。地球能诞生生命,实在是有很多巧合。

以上就是关于太阳与水星呈0度,太阳vs水星的知识,后面我们会继续为大家整理关于太阳与水星呈现零度的知识,希望能够帮助到大家!

点击联系需要东西方神秘学学习资料,专业的咨询

有需要联系v;hx-hx3 有需要联系v;hx-hx3 有需要联系v;hx-hx3如果对你有一点点帮助,欢迎打赏~~~  
图片1

联系我们

图片2

关注公众号

打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
刺梨占星塔罗刺梨占星塔罗
上一篇 2023年1月21日 上午10:01
下一篇 2023年1月21日 上午10:05

相关推荐

  • 金星3宫代表什么,金星落在3宫

    网上有很多关于金星3宫代表什么,金星落在3宫的知识,也有很多人为大家解答关于金星3宫的问题,今天刺梨占星网(nayona.cn)为大家整理了关于这方面的知识,让我们一起来看下吧!本文目录一览:1、金星

    2023年4月25日
  • 金星在4宫的爱情运势如何,金星落入宫位看爱情

    网上有很多关于金星在4宫的爱情运势如何,金星落入宫位看爱情的知识,也有很多人为大家解答关于金星在4宫的爱情的问题,今天刺梨占星网(nayona.cn)为大家整理了关于这方面的知识,让我们一起来看下吧!

    2023年4月21日
  • 南交点合对方火星,南交点合水星

    网上有很多关于南交点合对方火星,南交点合水星的知识,也有很多人为大家解答关于南交点合水星的问题,今天刺梨占星网(nayona.cn)为大家整理了关于这方面的知识,让我们一起来看下吧!本文目录一览:1、

    2023年4月11日
  • 马盘金星落对方7宫(马盘金星哪个星座觉得对方最美)

    如何自学 占星术 占星教程网盘 塔罗牌教程百度网盘 1、马盘金星落对方7宫马盘金星落对方7宫是一种占星学中的术语,通常用于描述一种爱情关系的特别状况。 在占星学中,马盘代表着爱情,…

    2023年3月26日
  • 上升射手座与太阳射手座,上升射手座与太阳射手座

    网上有很多关于上升射手座与太阳射手座,上升射手座与太阳射手座的知识,也有很多人为大家解答关于上升射手座与太阳射手的问题,今天刺梨占星网(nayona.cn)为大家整理了关于这方面的知识,让我们一起来看

    2023年1月28日
同行购买网站记得加这个v;hx-hx3